
Review of Sql Injection Defense Technique Based On The Analysis of …. Rani S.K et al.,

219 | P a g e

International Journal of Technology and Engineering System (IJTES)

Vol 7. No.3 2015 Pp. 219-223

©gopalax Journals, Singapore

available at : www.ijcns.com

ISSN: 0976-1345

REVIEW OF SQL INJECTION DEFENSE TECHNIQUE BASED ON

THE ANALYSIS OF DIFFERENT WEB BASED ATTACKS

RANI S.K, S.MOHAMED SALEEM
1
PG Scholar,

2
PG Scholar

 Department of Computer Science and Engineering

Valliammai Engineering College

Chennai, India
1
rsk1411@gmail.com,

2
mohamedsaleem25@gmail.com

ABSTRACT

Over the last few years, hacker community constantly researched about new techniques to exploit web applications

in a sophisticated manner and bypass traditional security controls. More troubling is that manipulating the

application, the hacker can use the trusted relationship between the application server and the database to gain

inappropriate access to sensitive information found on the site. Knowledge of various attack techniques and their

characteristic is significant to protect both the application and the database. In this paper focuses on different types

of SQL injection attack, its detection and prevention techniques. This study helps to protect your business from the

earlier stages of the attack with respect to the nature of the environment it takes place.

Keywords—Database Security; Information Security; Web attacks; SQL Injection;

I .INTRODUCTION

Web based attacks [1] are considered by security expertsto

be the greatest and oftentimes the least understood of all

risks related to confidentiality, availability, and integrity.

Application vulnerabilities could provide the means for

malicious end users to breach a system's protection
mechanisms typically to take advantage or gain access to

private information or system resources. Information

gathered can include social security numbers, dates of

birth, and maiden names, which are all often used in

identity theft. Another popular target for attackers is credit

card data which left unprotected and unencrypted can be

used to cause significant damage to organizations most

valued assets, their customers. Over the past two years,

malware has evolved to make increased use of the web.
The scope extends further than just malicious scripts

embedded in web pages, mainstream Web sites to act as

parasitic hosts that serve up Websites. Today it is common

place for legitimate malware to their unsuspecting visitors.

For example: numerous downloader Trojans use the web

as a simple file repository, downloading other malicious

files via HTTP. Malicious scripts hosted on attack sites

await the visit of vulnerable client browsers before they

unleash exploit code in order to infect the victim. This

paper focus on analysis of different web based attacks and

techniques for detection and prevention of SQL injection

attack [2].
A. Anatomy of a Web attack

1. Attacker breaks into a legitimate Web site and posts

malware. Malware is no longer exclusive to malicious

Fig.1 Anatomy of Web attacks

2. Attacking end user machines Malware on a Web site
makes its way down on to a user‟s machine when that user
visits the host Web site.

mailto:rsk1411@gmail.com
mailto:mohamedsaleem25@gmail.com

Review of Sql Injection Defense Technique Based On The Analysis of …. Rani S.K et al.,

220 | P a g e

3. Leveraging end user machines for malicious
activity.The most malicious activities begin once new
malware has established a presence on a user‟s machine.

B. SQL Injection Attack
One popular type of attack involves compromising the
database using a technique known as SQL injection.

Fig.2 SQL Injection Attack

II .TYPES OF SQL INJECTION ATTACKS

1. Ilegal/Logically Incorrect Queries: when a query is
rejected, an error message is returned from the database
including useful debugging information. This error
messages help attacker to find vulnerable parameters in
the application and consequently database of the
application. In fact attacker injects junk input or SQL
tokens in query to produce syntax error, type mismatches,
or logical errors by purpose. In this example attacker

http://www.arch.polimi.it/eventi/?id_nav=8864
2)SQL Injection:

http://www.arch.polimi.it/eventi/?id_nav=8864'

3) Error message showed:

SELECT name FROM Employee WHERE id =8864\'
From the message error we can find out name of table and
fields: name; Employee; id. By the gained information
attacker can organize more strict attacks.

2. Piggy-backed Query: Extracting data, adding or
modifying data, performing denial of service, executing
remote commands. In the piggy-backed Query attacker
tries to append additional queries to the original query
string. On the successful attack the database receives and
executes a query string that contains multiple distinct
queries. In this method the first query is original whereas
the subsequent queries are injected. This attack is very
dangerous; attacker can use it to inject virtually any type
of SQL command. For example, SELECT * FROM user
WHERE id=‟admin‟ AND password=‟1234‟; DROP
TABLE user; --‟; Here database treats above query string
as two query separated by “;” and executes both. The
second sub query is malicious query and it causes the
database to drop the user table in the database.
3. Blind SQL Injection: In this type of attack, useful
information for exploiting the backend database is
collected by inferring from the replies of the page after
questioning the server some true/false questions. It is very
similar to a normal SQL Injection. However, when an
attacker attempts to exploit an application, rather than
getting a useful error message, they get a generic page
specified by the developer instead. This makes exploiting
a potential SQL Injection attack more difficult but not
impossible. An attacker can still get access to sensitive
data by asking a series of True and False questions
through SQL statements.
Scenario
http://victim/listproducts.asp?cat=books
SELECT * from PRODUCTS WHERE category='books'
http://victim/listproducts.asp?cat=books' or '1'='1.
SELECT * from PRODUCTS WHERE category='books'
or '1'='1'.
4. Union Query
Union is a command in the database which work for
combining two queries, by using UNION command,
attacker merges their specially crafted queries with the
original query to extract the records from a table other
than the one intended by the developer. Continuing with

our running example, an attacker can invoke an union-
query attack using the URL

http://localhost/?EmpId=„ UNION<SQL statement>.

This url will render the following SQL statement.

SELECT empinfo FROM EmpTable WHERE EmpID = ''
UNION <SQL statement>. The second SQL statement
will get executed.
The signature of union-query attack is the UNION meta
character of SQL.
5. Alternate Encodings
The main goal is to escape detection. In this attack, the
injected text is modified so as to avoid detection by
defensive coding practices and also many programmed
prevention techniques. This type of attack is used in
unification with other attacks. In other words, substitute
encodings do not provide any single way to attack an
application; they are simply an enabling technique that
allows attackers to evade detection and prevention
techniques and exploit vulnerabilities that might not
otherwise be replaceable. These elusion techniques are
often necessary because a common defensive coding
practice is to scan for certain known “corrupt characters”
such as single quotes and comment operators
Example: $login = mysql_query(“SELECT * FROM user
WHERE (User_ID= „” .
mysql_real_escape_string($_POST[„User_ID‟]) . “‟) and
(pass_word = „” .
mysql_real_escape_string($_POST[„pass_word‟]) . “‟)”);
To evade this defence, attackers have employed alternate
methods of encoding their attack strings (e.g., using
hexadecimal, ASCII, and Unicode character encoding).
Common scanning and detection techniques do not try to
evaluate all specially encoded strings, thus allowing these
attacks to go undetected.
6. Timing Attacks: A timing attack lets an attacker gather
information from a database by observing timing delays in
the database's responses. This technique by using if-then
statement cause the SQL engine to execute a long running
query or a time delay statement depending on the logic

http://www.arch.polimi.it/eventi/?id_nav=8864
http://www.arch.polimi.it/eventi/?id_nav=8864

Review of Sql Injection Defense Technique Based On The Analysis of …. Rani S.K et al.,

221 | P a g e

injected. This attack is similar to blind injection and
attacker can then measure the time the page takes to load
to determine if the injected statement is true. This
technique uses an if-then statement for injecting queries.
WAITFOR is a keyword along the branches, which causes
the database to delay its response by a specified time.

For example, in the following query: declare @s
varchar(8000) select @s = db_name() if
(ascii(substring(@s, 1, 1)) & (power(2, 0))) > 0 waitfor
delay '0:0:5'

Database will pause for five seconds if the first bit of the
first byte of the name of the current database is 1. Then
code is then injected to generate a delay in response time
when the condition is true. Also, attacker can ask a series
of other questions about this character. As these examples

show, the information is extracted from the database using
a vulnerable parameter.
7. Stored Procedure : Performing privilege escalation,
performing denial of service, executing remote commands.
Description: In this technique, attacker focuses on the
stored procedures which are present in the database
system. Stored procedures run directly by the database
engine. Stored procedure is nothing but a code and it can
be vulnerable as program code. For
authorized/unauthorized user the stored procedure returns
true/false. As an SQLIA, intruder input “; SHUTDOWN; -
-" for username or password. Then the stored procedure
generates the following query: For example, SELECT
accounts FROM users WHERE login= '1111' AND
pass='1234 '; SHUTDOWN;--; This type of attack works
as piggyback attack

III . DETECTION AND PREVENTION TECHNIQUES

SQLrand Scheme - SQLrand approach [8] is proposed by
Boyd and Keromytis. For the implementation, they use a
proof of concept proxy server in between the Web server
(client) and SQL server; they de-randomized
queries received from the client and sent the request to the
server. This de-randomization
framework has 2 main advantages: portability and
security. The proposed scheme has good performance: 6.5
ms is the maximum latency overhead imposed on every
query.

1. Automated Approaches - Besides using manual

approaches, [9] also highlights the use of

automated approaches. The author notes that the

two main schemes are: Static analysis FindBugs

and Web vulnerabilityscanning. Static analysis

FindBugs approach detects bugs on SQLIAs,

gives warning when an SQL query is made of

variable. However, for Web vulnerability

scanning, it uses software agents to crawl and

scans Web applications and detects the
vulnerabilities by observing their behavior.

2. Parse Tree Validation Approach - Buehrer et al.

adopt the parse tree framework. They compared

the parse tree of a particular statement at runtime

and its original statement. They stopped the

execution of statement unless there is a match.

This method was tested on a student Web

application using SQLGuard. Although this

approach is efficient, it has two major

drawbacks: additional overheard computation

and listing of input (black or white).
3. Swaddler- Swaddler [10] analyzes the internal

state of a web application. It works based on

both single and multiple variables and shows an

impressive way against complex attacks to web

applications. First the approach describes the

normal values for the application‟s state

variables in critical points of the application‟s

components. Then, during the detection phase, it

monitors the application‟s execution to identify

abnormal states.
4. AMNESIA - In [11], Junjin proposes AMNESIA

approach for tracing SQL input flow and

generating attack input, JCrasher for generating

test cases, and SQLInjectionGen for identifying

hotspots. The experiment was conducted on two

Web applications running onMySQL1 1 v5.0.21.

Based on three attempts on the two databases,

SQLInjectionGen was found to give only two

false negatives in one attempt. The proposed

framework is efficient considering the fact that it

emphasizes on attack input precision. Besides
that, the attack input is properly matched with

method arguments. The only disadvantage of

this approach is that it involves a number of

steps using different tools.

5. Manual Approaches – [12] highlights the use of

manual approaches in order to prevent SQLI

input manipulation flaws. In manual approaches,

defensive programming and code review are

applied. In defensive programming: an input

filter is implemented to disallow users to input

malicious keywords or characters. This is

achieved by using white or black lists. As
regards to the code review [24], it is a low cost

mechanism in detecting bugs however it requires

deep knowledge on SQLIAs.

6. Ali et al.‟s Scheme - [13] adopts the hash value

approach to further improve the user

authentication mechanism. They use the user

name and password hash values. SQLIPA (SQL

Injection Protector for Authentication) prototype

was developed in order to test the framework.

The user name and password hash values are

created and calculated at runtime for the first
time the particular user account is created.

7. Haixia and Zhihong‟s Scheme - In [14], Haixia

and Zhihong propose a secure database testing

Review of Sql Injection Defense Technique Based On The Analysis of …. Rani S.K et al.,

222 | P a g e

design for Web applications. They suggest a few

things; firstly, detection of potential input points

of SQL Injection; secondly, generation of test

cases automatically then finally finding the

database vulnerability by running the test cases

to make a simulation attack to an application.
The proposed methodology is shown to be

efficient.

8. SecuriFly: SecuriFly [15] is tool that is

implemented for java. Despite of other tool,

chase string instead of character for taint

information and try to sanitize query strings that

have been generated using tainted input but

unfortunately injection in numeric fields cannot

stop by this approach. Difficulty of identifying

all sources of user input is the main limitation of

this approach.
9. SQL Prevent: SQL Prevent is consists of an

HTTP request interceptor. The original data flow

is modified when SQL Prevent is deployed into a

web server. The HTTP requests are saved into

the current thread-local storage. Then, SQL

interceptor intercepts the SQL statements that

are made by web application and pass them to

the SQLIA detector module. Consequently,

HTTP request from thread-local storage is

fetched and examined to determine whether it

contains an SQLIA. The malicious SQL

statement would be prevented to be sent to
database, if it is suspicious to SQLIA.

10. SQLCHECK: Su and Wassermann implement

their algorithm with SQLCHECK on a real time

environment. It checks whether the input queries

conform to the expected ones defined by the

programmer. A secret key is used for the user

input delimitation. The analysis of SQLCHECK

shows no false positives or false negatives. Also,

the overhead runtime rate is very low and can be

implemented directly in many other Web

applications using different languages.

11. SQL-IDS Approach - Kemalis and Tzouramanis

suggest using a novel specification-based
methodology for the detection of exploitations of
SQL injection vulnerabilities. The proposed
query-specific detection allowed the system to
perform focused analysis at negligible
computational overhead without producing false
positives or false negatives.

12. Context Sensitive String Evaluation (CSSE) The

basic idea behind this approach is to find out the

root cause of SQLIA [31]. The root cause is the

origin of the data (information about the data,

termed as metadata) i.e., user-provided or

developer-provided. Thus, any data provided by

the user is marked as untrusted and data

provided by the applications are termed as

trusted. The untrusted metadata are used for

syntactic analysis based on „Context Sensitive

String Evaluation (CSSE)‟. Injection may also
occur due to programming flaws during

developments. CSSE is basically based on

syntactical analysis, which first distinguishes

string constants (for e.g., select *from users

where login=‟$login_name‟) and numerical

constants (e.g., select * from users where

pin=$pin). It then removes all unsafe characters

(un-escaped quotes) in alphanumeric identifiers

and non-numeric characters in numeric

identifiers. This operation is performed before

sending the query to the database server.
Following issues are there in this approach (i)

Initialization of the unsafe characters is

dependent on the web programmer, and (ii)

Removal of unsafe characters restricts the

application functionality.
13. CANDID Bishtet al proposed CANDID. It is a

Dynamic Candidate Evaluations method for
automatic prevention of SQL Injection attacks.
This framework dynamically extracts the query
structures from every SQL query location which
are intended by the developer (programmer).
Hence, it solves the issue of manually modifying
the application to create the prepared statements.

14. SAFELI - proposes a Static Analysis
Framework in order to detect SQL Injection
Vulnerabilities. SAFELI framework aims at
identifying the SQL Injection attacks during the
compile-time. This static analysis tool has two
main advantages. Firstly, it does a White-box
Static Analysis and secondly, it uses a Hybrid-
Constraint Solver. For the White-box Static
Analysis, the proposed approach considers the
byte-code and deals mainly with strings. For the
Hybrid-Constraint Solver, the method
implements an efficient string analysis tool
which is able to deal with Boolean, integer and
string variables

IV . CONCLUSION

In this paper different types of SQL Injection attacks and
their defence technique is surveyed. However, there are
several medium are available to attempt various web
based attacks, the major cause for loss of database
security is user unawareness. This study will help the
user to get full-fledged knowledge about SQL injection.
Advantages and disadvantages of different web based
attacks also discussed.

REFERENCES

[1] http://www.darkreading.com/risk/10-web-based-
attacks-targeting- yourend-users/d/d-id/1140224

[2] https://www.owasp.org/index.php/SQL_Injection

[3] Mohammed Alenezi and Martin J. Reed School
of Computer Science and Electronic Engineering
“Denial of Service Detection Through

http://www.darkreading.com/risk/10-web-based-attacks-targeting-%20%20%20%20yourend-users/d/d-id/1140224
http://www.darkreading.com/risk/10-web-based-attacks-targeting-%20%20%20%20yourend-users/d/d-id/1140224
https://www.owasp.org/index.php/SQL_Injection

Review of Sql Injection Defense Technique Based On The Analysis of …. Rani S.K et al.,

223 | P a g e

TCP Congestion Window Analysis” World Congress on
Internet Security 2013.

[4] Piromsopa, K. and Enbody, R.J. “Buffer
Overflow Protection: The Theory,” IEEE
International Conference on Electro/information
Technology, 2006.

[5] Yongle Wangs Xuchang ploughs the recent
information science research institute Xuchang,
JunZHang Chen Xuchang Vocational Technical College
Xuchang, China“Hijacking spoofing attack and
defense strategy based on Internet TCP sessions”
2013

[6] I.Ullah, N.Khan, and H.A Aboalsamh,
 “Survey on botnet: Its architecture, detection, prevent
ion and mitigation” 10th international conference on
Network Sensing and Control.

[7] Paul C. Kocher, “Timing Attacks on
Implementations of DiffieHellman,RSA, DSS and
other systems,” cryptography research Inc.

[8] S. W. Boyd and A. D. Keromytis. SQLrand:
Preventing SQL Attacks. In Proceedings of the 2nd
Applied Cryptography and Network Security
Conference, pages 292–302, June 2004.

[9] Mei Junjin, "An Approach for SQL Injection
Vulnerability.

[10] Detection," Proc. of ITNG '09, pp.1411-1414,
27-29 April 2009.

[11] Macro Cova, Davide Balzarotti. Swaddler:” An
Approach for the Anomaly-based Detection of State
Violations in Web Applications”, Recent
Advances in Intrusion Detection, Proceedings, volume:
4637 Pages: 63-86 Published: 2007

[12] M. Junjin, “An Approach for SQL Injection

Vulnerability Detection,” Proc. of the 6th Int. Conf.
on Information Technology: New Generations, Las

Vegas, Nevada, pp. 1411 1414, April 2009.

[13] Mei Junjin, "An Approach for SQL Injection
Vulnerability Detection," Proc. of ITNG '09, pp.1411-
1414, 27-29 April 2009. Mechanism Against SQL
Injection,” European Journal of Scientific Research
ISSN 1450-216X Vol.38 No.4 (2009), pp 604-611

[14] Y. Haixia, N. Zhihong, "A database security
testing scheme of web application," Proc. of ICCSE '09 ,
pp. 953-955, 2009.

[15] M. Martin, B. Livshits, and M. S. Lam., “
Finding Application Errors and Security Flaws Using
PQL: A Program Query Language” ACM SIGPLAN
Notices, Volume: 40, Issue: 10 Pages: 365-383, 2005.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Piromsopa,%20K..QT.&searchWithin=p_Author_Ids:37395243800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Enbody,%20R.J..QT.&searchWithin=p_Author_Ids:37354078100&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6548817&queryText%3DSURVEY+ON+BOTNET%3A+ITS+ARCHITECTURE%2C+++++++DETECTION+PREVENTION+AND+MITIGATION
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6548817&queryText%3DSURVEY+ON+BOTNET%3A+ITS+ARCHITECTURE%2C+++++++DETECTION+PREVENTION+AND+MITIGATION

